Where To Buy Waxy Corn
LINK > https://cinurl.com/2tDTKR
Waxy corn or glutinous corn is a type of field corn characterized by its sticky texture when cooked as a result of larger amounts of amylopectin. The corn was first described from a specimen from China in 1909. As this plant showed many peculiar traits, the American breeders long used it as a genetic marker to tag the existence of hidden genes in other maize breeding programs. In 1922 a researcher found that the endosperm of waxy maize contained only amylopectin and no amylose starch molecule in opposition to normal dent corn varieties that contain both. Until World War II, the main source of starch in the United States was tapioca, but when Japan severed the supply lines of the U.S., they forced processors to turn to waxy maize. Amylopectin or waxy starch is now used mainly in food products, but also in the textile, adhesive, corrugating and paper industry.
When feeding trials later on showed that waxy maize could produce more efficient feed gains than normal dent maize, interest in waxy maize suddenly expanded. Geneticists could show that waxy maize has a defect in metabolism precluding the synthesis of amylose in the endosperm. It is coded by a single recessive gene (wx). Waxy maize yield about 3.5% less than their normal dent counterparts and has to be isolated from any nearby normal maize fields by at least 200 meters.
The exact history of waxy maize is unknown. The first mentions of it were found in the archives of the U.S. Department of Agriculture (USDA). In 1908, the Rev. J. M. W. Farnham, a Presbyterian missionary in Shanghai, sent a sample of seeds to the U.S. Office of Foreign Seed and Plant Introduction. A note with the seeds called it: "A peculiar kind of corn. There are several colours, but they are said to be all the same variety. The corn is much more glutinous than the other varieties, so far as I know, and may be found to be of some use, perhaps as porridge." These seeds were planted on May 9, 1908, near Washington, D.C., by a botanist named Guy N. Collins. He was able to grow 53 plants to maturity and made a thorough characterisation of these plants, including photographs, which were published in a USDA bulletin issued in December 1909.[1]
But the finding of this unique variety of maize suggested a re-examination of the question. He also states that Portuguese arrived in China in 1516, simultaneously introducing maize. Collins supposed that waxy maize has arisen by a way of mutation in Upper Burma.[4] For some scholars it was difficult to conceive that from 1516 on the American plant had had time to penetrate into a wild country inaccessible to foreigners, to produce a mutation, and as such a mutant to spread from the Philippines to Northern Manchuria and the Primorsky region within three to four hundred years.[2]
Nowadays we are able to counterpart both of these arguments. At first we know that the waxy mutation is quite common (see #Genetics). Secondly, the fact that maize, if introduced into Asia in Post-Columbian times, must have been rapidly accepted merely indicates that, like the potato in Ireland, it met an acute and pressing need.[5]
And when Collins found such a distinct difference in the appearance of normal and waxy maize endosperm, he suspected a difference in chemical composition, but the analysis did not yield any unusual results. The percentages of starch, oil, and protein were all within the normal range. Yet, he was intrigued by the physical nature of the starch, and wrote: "In view of the recent development of specialised maize products as human food, the unique type of starch may be of some economic importance." So actually, for many years the main use of waxy maize was a genetic marker for other maize breeding programs. Breeders were able to use some of the traits to "tag" the existence of hidden genes and follow them through breeding programs. It is possible that waxy maize would have become extinct again in the USA without this special application in breeding.[citation needed]
In 1922, another researcher, P. Weatherwax of Indiana University in Bloomington, reported that the starch in waxy maize was entirely of a "rare" form called "erythrodextrin", known today as amylopectin.[10] He found that this rare starch stained red with iodine, in contrast to normal starch which stained blue. Bates, French et al.[11] and Sprague, Brimhall, et al.[12] confirmed that endosperm starch of waxy maize consists nearly exclusively of amylopectin. The presence of amylopectin in rice had been demonstrated previously by Parnell.[13]
In 1937, just before World War II, G.F. Sprague and other plant breeders at what was then called Iowa State College had begun a crossbreeding program to attempt to introduce the waxy trait into a regular high-yielding hybrid maize. By this time, the waxy plant no longer had the peculiar structural traits noted by Collins, probably due to years of crossing into various genetic stocks. Only the unique endosperm had been retained. At this time, waxy maize was not so important because the main source of pure amylopectin still was the cassava plant, a tropical shrub with a large underground tuber.[14]
During World War II, when the Japanese severed the supply lines of the States, processors were forced to turn to waxy maize.[15] Waxy maize appeared to be especially suitable for this purpose because it could be milled with the same equipment already extensively used for ordinary maize.[16] H. H. Schopmeyer has advised that the production of waxy maize in Iowa for industrial use amounted to approximately 356 metric tons in 1942 and 2540 tons in 1943.[17] In 1944, there were only 5 varieties of waxy maize available for waxy starch production. In 1943, to cover all the special requirements for amylopectin, approximately 81650 tons of grains were produced. From World War II until 1971, all the waxy maize produced in the U.S. was grown under contract for food or industrial processors. In fact, most of the maize was grown in only a few counties in Iowa, Illinois, and Indiana.[18]
Some farmers who fed this waxy grain to their beef cattle observed that animals thrived on it. Feeding trials were set up which suggested that the waxy maize produced more efficient weight gains than normal dent. Interest in waxy maize suddenly mushroomed, and this maize type abandoned the status of botanical curiosity and speciality product to become the subject of major research importance.[18]
The starch of normal dent maize is characterised by a content of about 25% amylose with the remainder being amylopectin and the intermediate fraction (see 3.5 Biochemistry). But these percentages vary among cultivars and with kernel development. For example, amylose percentage ranged from 20 to 36% for 399 cultivars of normal maize.[22][23] There are maize germplasm collected that range from less than 20 to 100% complement of amylopectin.[21] And waxy maize contains 100% amylopectin.[12]
A striking example of genetic drift in maize is the occurrence in parts of Asia of varieties with waxy endosperm. In maize races of America such a variety is unknown, but the waxy character itself has been discovered in non-waxy varieties: in a New England flint maize[25] and in a South American variety.[26][27]
The fact that waxy maize occurs so commonly in a part of the world that also possesses waxy varieties of waxy rice, sorghum, and millet can be attributed to artificial selection. The people of Asia being familiar with waxy varieties of these cereals and accustomed to using them for special purposes recognised the waxy character in maize after it was introduced into Asia following the discovery of America and purposely isolated varieties purely for waxy endosperm. But the fact that waxy endosperm came to their attention in the first place is probably due to genetic drift. The gene for waxy endosperm, which has a low frequency in American maize, apparently attained a high frequency in certain samples of Asian maize.[citation needed]
Indeed, the practice reported by Stonor and Anderson[28] of growing maize as single plants among other cereals would result in some degree of self-pollination and, in any stock in which the waxy gene was present, would inevitably lead in a very short time to the establishment of pure waxy varieties with special properties that people accustomed to the waxy character in other cereals could hardly fail to recognise.[5]
Genetic research of this genetic drift started first with describing the physical appearance (phenotyping) of the mutant maize. Later on these phenotypes were coupled to mutant genes genotypes. More than 40 mutant alleles are known for the waxy locus, making up the finest collection of mutations found among higher plants.[29]
Some of these waxy mutants are very stable whereas others are very unstable. The genotype of the stable mutants remains unchanged whereas the one of unstable mutants changes because of the insertion of transposable elements (5-8).[29] For a listing of all these mutations, the excellent book of Neuffer, Coe et al.[30] is greatly recommended.[citation needed]
Because the waxy mutation is expressed in an easy identifiable nonlethal phenotype, it has been the subject of major research during the 20th century. Nelson[31] made a fine structure genetic map of most of these mutations[citation needed]
Plants which are heterozygous on the waxy gene (Wx:wx) can be characterised by staining the pollen with iodine. Half of the pollen will be blue and half brown whereas the kernels will stay blue (very helpful in backcrossing program). If the plant is homozygous recessive (wx:wx) the whole pollen will be brown and the kernel too. Being homozygously dominant (Wx:Wx) the iodine will appear only blue.[citation needed]
New varieties with the waxy locus are relatively easy to breed through back-crossing breeding with dent maize varieties, but their productivity is approximately 3 to 10% less than that of dent maize.[citation needed] 781b155fdc